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Abstract. Let I be an ideal of a polynomial algebra over a field, generated by
r-square free monomials of degree d. If r is bigger (or equal) than the number of
square free monomials of I of degree d + 1 then depthS I = d. Let J ⊂ I, J 6= 0
be generated by square free monomials of degree ≥ d + 1. If r is bigger than the
number of square free monomials of I \ J of degree d + 1 then depthS I/J = d. In
particular Stanley’s Conjecture holds in both cases.
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Introduction

Let S = K[x1, . . . , xn] be the polynomial algebra in n-variables over a field K, d
a positive integer and I ⊃ J , I 6= J be two square free monomial ideals of S such
that I is generated in degree ≥ d, respectively J in degree d + 1. Let ρd(I) be the
number of all square free monomials of degree d of I. It is easy to note (see Lemma
1.1) that depthS I/J ≥ d. Our Theorem 2.3 gives sufficient conditions which imply
depthS I/J = d, namely this happens when

ρd(I) > ρd+1(I)− ρd+1(J).

Suppose that this condition holds. Then the Stanley depth of I/J (see [9], [1], or
here Remark 2.7) is d and if Stanley’s Conjecture holds then depthS I/J ≤ d, that is
the missing inequality. Thus to test Stanley’s Conjecture means to test the equality
depthS I/J = d, which is much easier since there exist very good algorithms to
compute depthS I/J but not so good to compute the Stanley depth of I/J . After
a lot of examples computed with the computer system SINGULAR we understood
that a result as Theorem 2.3 is believable. Since the application of the Depth Lemma
gives in many cases only inequalities, we had to find for the proof special short exact
sequences, where this lemma gives a precise value of depthS I/J .

The proof of Theorem 2.3 was found looking to many useful examples, two of them
being presented here as Examples 2.1, 2.2. The above condition is not necessary
to have depthS I/J = d as shows Example 2.5. Necessary and sufficient conditions
could be possible found classifying some posets (see Remark 2.6) but this is not the
subject of this paper. If I is generated by more (or equal) square free monomials
of degree d than

(
n
d+1

)
, or more general than ρd+1(I), then depthS I = d as shows
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our Corollary 3.4 extending [8, Corollary 3], which was the starting point of our
research, the proof there being much easier. Remark 3.5 says that the condition of
Corollary 3.4 is tight.

1. Factors of square free monomial ideals

Let J ⊂ I ⊂ S, J 6= I be two nonzero square free monomial ideals and d a
positive integer. Let ρd(I) be the number of all square free monomials of degree d
of I. Suppose that I is generated by square free monomials f1, . . . , fr , r > 0 of
degree ≥ d and J is generated by square free monomials of degree ≥ d + 1. Set
s := ρd+1(I) − ρd+1(J) and let b1, . . . , bs be the square free monomials of I \ J of
degree d+ 1.

Lemma 1.1. depthS I, depthS I/J ≥ d.

Proof. By an argument of J. Herzog (see [8, Remark 1.2]) we have depthS I ≥ d,
depthS J ≥ d + 1. The conclusion follows applying the Depth Lemma in the exact
sequence 0→ J → I → I/J → 0. �

Lemma 1.2. Suppose that J = E + F , F 6⊂ E, where E,F are ideals generated by
square free monomials of degree d+ 1, respectively > d+ 1. Then depthS I/J = d if
and only if depthS I/E = d.

Proof. We may suppose that in E there exist no monomial generator of F . In the
exact sequence

0→ J/E → I/E → I/J → 0

we see that the first end is isomorphic with F/(F ∩ E) and has depth ≥ d + 2 by
Lemma 1.1. Applying the Depth Lemma we are done. �

Before trying to extend the above lemma is useful to see the next example.

Example 1.3. Let n = 4, d = 1, I = (x2), E = (x2x4), F = (x1x2x3). Then
depthS I/E = 3 and depthS I/(E + F ) = 2.

Lemma 1.4. Let H be an ideal generated by square free monomials of degree d+ 1.
Then depthS I/J = d if and only if depthS(I +H)/J = d.

Proof. By induction on the number of the generators of H it is enough to consider
the case H = (u) for some square free monomial u 6∈ I of degree d+ 1. In the exact
sequence

0→ I/J → (I + (u))/J → (I + (u))/I → 0

we see that the last term is isomorphic with (u)/I ∩ (u) and has depth ≥ d + 1 by
Lemma 1.1, since I ∩ (u) has only monomials of degree > d + 1. Using the Depth
Lemma the first term has depth d if and only if the middle has depth d, which is
enough. �

Using Lemmas 1.2, 1.4 we may suppose always in our considerations that I, J are
generated in degree d, respectively d+ 1, in particular fi have degrees d.

Lemma 1.5. Let e ≤ r be a positive integer and I ′ = (f1, . . . , fe), J
′ = J ∩ I ′. If

depthS I
′/J ′ = d then depthS I/J = d .
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Proof. In the exact sequence

0→ I ′/J ′ → I/J → I/(I ′ + J)→ 0

the right end has depth ≥ d by Lemma 1.1 because

I/(I ′ + J) ∼= (fe+1, . . . , fr)/(J + (I ′ ∩ (fe+1, . . . , fr)))

and I ′ ∩ (fe+1, . . . , fr) is generated by monomials of degree > d. If the left end has
depth d then the middle has the same depth by the Depth Lemma. �

Lemma 1.6. Suppose that there exists i ∈ [r] such that fi has in J all square free
multiples of degree d+ 1. Then depthS I/J = d.

Proof. We may suppose i = 1. By our hypothesis J : f1 is generated by (n − d)-
variables. If r = 1 then the depth of I/J ∼= S/(J : f1) is d. If r > 1 apply the above
lemma for e = 1. �

Lemma 1.7. Suppose that r ≥ 2 and the least common multiple b = [f1, f2] has
degree d+1 and it is the only monomial of degree d+1 which is in (f1, f2)\J . Then
depthS I/J = d.

Proof. Apply induction on r ≥ 2. Suppose that r = 2. By hypothesis the greatest
common divisor u = (f1, f2) have degree d− 1 and after renumbering the variables
we may suppose that fi = xiu for i = 1, 2. By hypothesis the square free multiples
of f1, f2 by variables xi, i > 2 belongs to J . Thus we see that I/J is a module over
a polynomial ring in (d+ 1)-variables and we get depthS I/J ≤ d since I/J it is not
free. Now it is enough to apply Lemma 1.1. If r > 2 then apply Lemma 1.5 for
e = 2. �

Proposition 1.8. Suppose that r > s and for each i ∈ [r] there exists at most one
j ∈ [s] with fi|bj. Then depthS I/J = d.

Proof. If there exists i ∈ [r] such that fi has in J all square free multiples of degree
d + 1, then we apply Lemma 1.6. Otherwise, each fi has a square free multiple of
degree d + 1 which is not in J . By hypothesis, there exist i, j ∈ [r], i 6= j such
that fi, fj have the same multiple b of degree d + 1 in I \ J . Now apply the above
lemma. �

Corollary 1.9. Suppose that r > s ≤ 1. Then depthS I/J = d.

Proposition 1.10. Suppose that r > s = 2. Then depthS I/J = d.

Proof. Using Lemma 1.5 for e = 3 we reduce to the case r = 3. By Lemma 1.6 we
may suppose that each fi divides b1, or b2. By Proposition 1.8 we may suppose that
f1|b1, f1|b2, that is f1 is the greatest common divisor (b1, b2). Assume that f2|b1. If
f2|b2 then we get f2 = (b1, b2) = f1, which is false. Similarly, if f3|b1 then f3 6 |b2
and we may apply Lemma 1.7 to f2, f3. Thus we reduce to the case when f3|b2 and
f3 6 |b1. We may suppose that b1 = x1f1, b2 = x2f1 and x1, x2 do not divide f1

because bi are square free. It follows that b1 = xif2, b2 = xjf3 for some i, j > 2 with
xi, xj|f1.

3



Case i = j
Then we may suppose i = j = 3 and f1 = x3u for a square free monomial u

of degree d − 1. It follows that f2 = x2u, f3 = x1u. Let S ′ be the polynomial
subring of S in the variables x1, x2, x3 and those dividing u. Then for each variable
xk 6∈ S ′ we have fixk ∈ J and so I/J ∼= I ′/J ′, where I ′ = I ∩ S ′, J ′ = J ∩ S ′.
Changing from I, J, S to I ′, J ′, S ′ we may suppose that n = d + 2 and u = Πn

i>3xi.
Then I/J ∼= (I : u)/(J : u) ∼= (x1, x2, x3)S/((x1x2) + L)S, where L is an ideal
generated in T := K[x1, x2, x3] by square free monomials of degree > 2. Then
depthS I/J = d− 1 + depthT (x1, x2, x3)T/(x1x2, L). By Lemma 1.2 it is enough to
see that depthT (x1, x2, x3)T/(x1x2)T = 1.

Case i 6= j
Then we may suppose i = 3, j = 4 and f1 = x3x4v for a square free monomial v

of degree d − 2. It follows that f2 = x1f1/x3 = x1x4v, f3 = x2f1/x4 = x2x3v. Let
S ′′ be the polynomial subring of S in the variables x1, x2, x3, x4 and those dividing
v. As above I/J ∼= I ′′/J ′′, where I ′′ = I ∩ S ′′, J ′′ = J ∩ S ′′. Changing from I, J, S
to I ′′, J ′′, S ′′ we may suppose that n = d+ 2 and v = Πn

i>4xi. Then

I/J ∼= (I : v)/(J : v) ∼= (x1x4, x2x3, x3x4)S/((x1x2x3, x1x2x4) + L′)S,

where L′ is an ideal generated in T ′ := K[x1, x2, x3, x4] by square free monomials of
degree > 3. Then

depthS I/J = d− 2 + depthT ′(x1x4, x2x3, x3x4)T
′/((x1x2x3, x1x2x4) + L′)T ′.

By Lemma 1.2 it is enough to see that

depthT ′(x1x4, x2x3, x3x4)T
′/(x1x2x3, x1x2x4)T

′ = 2.

�

Proposition 1.11. Suppose that d = 1 and r > s. Then depthS I/J = 1.

Proof. We may suppose that I = (x1, . . . , xr). If r = n then depths S/I = 0 and it
follows depthS I/J = 1 by the Depth Lemma because depthS S/J ≥ 1 by Lemma
1.1. Suppose that r < n. Using Lemma 1.6 we may suppose that each xi, i ∈ [r]
divides a certain bk. Apply induction on s, the case s ≤ 2 being done in the above
proposition. We may assume that s > 2 and b1 = x1x2. If there exist no bk, k > 1 in
(x1, x2) then we may take I ′ = (x1, x2), J

′ = J ∩ I ′ and we have depthS I
′/J ′ = 1 by

induction hypothesis or by Lemma 1.7. It follows that depthS I/J = 1 by Lemma
1.5. Thus we may assume that b2 = x2x3. Using induction hypothesis and the same
argument we may suppose that b3 ∈ (x1, x2, x3) and so we may assume b3 = x3x4.
By recurrence we may assume that bk = xkxk+1 for k ∈ [s − 1] and bs = xsxt for
a certain t ∈ [n]. Note that t > s because otherwise xr divides no bk. Thus we
may assume that bs = xsxs+1. It follows that r = s + 1. Let S ′′ = K[x1, . . . , xr],
I ′′ = I ∩ S ′′, J ′′ = J ∩ S ′′. Then depthS′′ I ′′/J ′′ = 1 by the above case r = n.
Note that (xr+1, . . . , xn)I ⊂ J . Since I/J ∼= (I ′′S/J ′′S) ⊗S S/(xr+1, . . . , xn) we get
depthS I/J = depthS(I ′′S/J ′′S)− (n− r) = depthS′′ I ′′/J ′′ = 1. �
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2. Main result

We want to extend Proposition 1.10 for the case s > 2. Next examples are
illustrations of our method.

Example 2.1. Let n = 6, d = 3, f1 = x1x5x6, f2 = x2x4x6, f3 = x3x4x5, f4 =
x4x5x6, J = (x1x2x4x6, x1x2x5x6, x1x3x4x5, x1x3x5x6, x2x3x4x5, x2x3x4x6) and I =
(f1, f2, f3, f4). We have s = 3, b1 = x1f4 = x4f1, b2 = x2f4 = x5f2, b3 = x3f4 = x6f3.
Let S ′ = K[x1, . . . , x5], f

′
1 = f1/x6, f

′
2 = f2/x6, f

′
4 = f4/x6 and U = (f ′1, f

′
2, f

′
4),

V = (x1x2x4, x1x2x5, x1x3x5, x2x3x4) be ideals of S ′. In the exact sequence

0→ (I + V S)/V S → US/V S → US/(I + V S)→ 0

the middle term has the depth ≥ 3 because depthS′ U/V ≥ 2 by Lemma 1.1. The
last term US/(I + V S) has then the depth 2 by Proposition 1.10, since in this case
µ(U) = 3 but there exist just two monomials in US \ (I + V S) of degree 3, namely
b′1 = x1x4x5 = b1/x6, b

′
2 = x2x4x5 = b2/x6 because b3/x6 = f3 ∈ I. By the Depth

Lemma it follows that the first term has the depth 3. But the first term is isomorphic
with I/(I ∩ V S) = I/J since J = I ∩ V S. Hence depthS I/J = 3.

Example 2.2. Let n = 6, d = 2, f1 = x1x6, f2 = x1x5, f3 = x1x3, f4 = x3x4,
f5 = x2x4,

J = (x1x2x4, x1x2x5, x1x2x3, x1x2x6, x1x3x6, x1x4x5, x1x4x6,

x2x4x5, x2x4x6, x3x4x5, x3x4x6)

and I = (f1, f2, f3, f4, f5). We have s = 4, b1 = x5f1 = x6f2, b2 = x3f2 = x5f3,
b3 = x4f3 = x1f4, b4 = x2f4 = x3f5. Let W be the ideal generated by all
monomials of degree d which are not divisors of any bk, k ∈ [s]. Then W =
(x1x2, x2x5, x2x6, x3x6, x4x5, x4x6) and note that I ∩W = J . Set T = (x1, x4, x3x6).
In the exact sequence

0→ (I +W )/W → T/W → T/(I +W )→ 0

the middle term has the depth ≥ 2 because depthS S/T = 3 and depthS S/W ≥ 2
by Lemma 1.1. The last term T/(I +W ) has the depth 1 by Corollary 1.9, since in
this case there are only 2-generators of degree 1 but there exists just one monomial
x1x4 in T \ (I +W ) of degree 2. By the Depth Lemma it follows that the first term
has the depth 2. But the first term is isomorphic with I/(I ∩W ) = I/J . Hence
depthS I/J = 2.

Theorem 2.3. If r > s then depthS I/J = d, independently of the characteristic of
K.

Proof. Apply induction on s, the case s ≤ 2 being done in Proposition 1.10. Fix
s > 2 and apply induction on d ≥ 1, the case d = 1 being done in Proposition
1.11. Using Lemma 1.6 we may suppose that each fi, i ∈ [r] divides a certain
bk. Since r > s we may suppose that one bk is a multiple of two different fi,
let us say b1 = x1f1 = x2f2. In fact we may assume that each bk is a multiple
of two different fi because if let us bs is just a multiple of fr then we may take
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I ′ = (f1, . . . , fr−1), J
′ = J ∩ I ′ and we get depthS I

′/J ′ = 2 by induction hypothesis
on s since r − 1 > s− 1, that is depthS I/J = 2 by Lemma 1.5.

Set g = f1/x2, that is g is the greatest common divisor between f1, f2. We
may suppose that g|fi if and only if i ∈ [e] for some 2 ≤ e ≤ r. Clearly g has
degree d − 1 ≤ n − e since bk are square free. If e = r then I = gI ′′S, J =
J ′′S for some monomial ideals I ′′, J ′′ of S ′′ = K[{xi; 1 ≤ i ≤ n, xi 6 |g}] and
depthS I/J = depthS I

′′S/J ′′S = (d− 1) + depthS′′ I ′′/J ′′. By the Proposition 1.11
depthS′′ I ′′/J ′′ = 1 and so depthS I/J = d.

Now we may suppose that e < r and fi = xig for i ∈ [e]. If each fi, i > e does
not divide any bk, k ∈ [e] then we may take I ′ = (fe+1, . . . , fr), J

′ = J ∩ I ′ and
we get depthS I

′/J ′ = d by induction hypothesis on s since r − e > s − e, that is
depthS I/J = d by Lemma 1.5.

Thus we may suppose that fr|b1, that is fr = x1x2g/xν for some variable xν
dividing g. This is because g does not divide fr. We may assume ν = n and so
fr = b1/xn = x1x2g

′ for g′ = g/xn. Let W be the ideal generated by all monomials
of S of degree d which are not divisors of any bk, k ∈ [s]. Set E = (x1, . . . , xe)g

′ + I
and T = E +W . In the exact sequence

0→ (I +W )/(J +W )→ T/(J +W )→ T/(I +W )→ 0

the middle term is isomorphic with E/(E ∩ (J + W )) which has the depth ≥ d by
Lemmas 1.1, 1.2, 1.4 because E ∩W is generated in degree > d and (x1, . . . , xe)g

′

is generated in the first (n− 1)-variables.
The last term T/(I +W ) has the depth d− 1 by induction hypothesis on d, since

in this case there are e-generators of T of degree d−1, but there are at most (e−1)-
monomials b′2 = b2/xn, . . . , b

′
e = be/xn in T \ (I + W ) of degree d. By the Depth

Lemma it follows that the first term has the depth d. The first term is isomorphic
with I/(I ∩ (J +W )). Note that the degree of a square free monomial u from I ∩W
is ≥ d + 1 and if it is d + 1 then it is not a bk because the generators of W do not
divide bk, that is u ∈ J . Thus I∩ (J+W ) and J have the same monomials of degree
d+ 1 and so depthS I/(I ∩ (J +W )) = depthS I/J = d by Lemma 1.2. �

The condition given in Theorem 2.3 is tight as shows the following two examples.

Example 2.4. Let n = 4, d = 2, f1 = x1x3, f2 = x2x4, f3 = x1x4 and I =
(f1, . . . , f3), J = (x2x3x4) be ideals of S. We have r = s = 3, b1 = x1x2x3,
b2 = x1x2x4, b3 = x1x3x4, and depthS I/J = d+ 1.

Example 2.5. Let n = 6, d = 2, f1 = x1x5, f2 = x2x3, f3 = x3x4, f4 = x1x6,
f5 = x1x4, f6 = x1x2, and I = (f1, . . . , f6),

J = (x1x2x4, x1x2x5, x1x3x5, x1x3x6, x1x4x6, x2x3x5, x2x3x6, x3x4x5, x3x4x6).

We have r = s = 6 and b1 = x1x4x5, b2 = x2x3x4, b3 = x1x2x3, b4 = x1x5x6,
b5 = x1x3x4, b6 = x1x2x6 but depthS I/J = 2.

Remark 2.6. The above example shows that one could find a nice class of factors
of square free monomial ideals with r = s but depthS I/J = d similarly as in [7,
Lemma 6]. An important tool seems to be a classification of the possible posets
given on f1, . . . , fr, b1, . . . , bs by the divisibility.
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Remark 2.7. Given J ⊂ I two square free monomial ideals of S as above one
can consider the poset PI\J of all square free monomials of I \ J (a finite set)
with the order given by the divisibility. Let P be a partition of PI\J in intervals
[u, v] = {w ∈ PI\J : u|w,w|v}, let us say PI\J = ∪i[ui, vi], the union being disjoint.
Define sdepthP = mini deg vi and sdepthS I/J = maxP sdepthP , where P runs in
the set of all partitions of PI\J . This is the so called the Stanley depth of I/J ,
in fact this is an equivalent definition given in a general form in [9], [1]. If r > s
then it is obvious that sdepthS I/J = d and so Theorem 2.3 says that Stanley’s
Conjecture holds, that is sdepthS I/J ≥ depthS I/J . In general the Stanley depth
of a monomial ideal I is greater or equal with the Lyubeznik’ size of I increased by
one (see [2]). Stanley’s Conjecture holds for intersections of four monomial prime
ideals of S by [4] and [6] and for square free monomial ideals of K[x1, . . . , x5] by
[5] (a short exposition on this subject is given in [7]). Also Stanley’s Conjecture
holds for intersections of three monomial primary ideals by [10]. If I is generated
by r-square free monomials of degree d then sdepthS I = d if and only if r >

(
n
d+1

)
as shows [8, Corollary 10] extending [3, Corollary 2.2]. A similar result for factors
of square free monomial ideals is still not done, though should hold.

3. Around Theorem 2.3

Let S ′ = K[x1, . . . , xn−1] be a polynomial ring in n − 1 variables over a field
K, S = S ′[xn] and U, V ⊂ S ′, V ⊂ U be two square free monomial ideals. Set
W = (V + xnU)S. Actually, every monomial square free ideal T of S has this form
because then (T : xn) is generated by an ideal U ⊂ S ′ and T = (V + xnU)S for
V = T ∩ S ′.
Lemma 3.1. ([5]) Suppose that U 6= V and depthS′ S ′/U = depthS′ S ′/V =
depthS′ U/V . Then depthS S/W = depthS′ S ′/U .

Lemma 3.2. Suppose that U 6= V and d := depthS′ S ′/U = depthS′ S ′/V . Then
d = depthS′ U/V if and only if d = depthS S/W .

Proof. The necessity follows from the above lemma. For sufficiency note that in the
exact sequence

0→ V S → W → US/V S → 0

the depth of the left end is d + 2 and the middle term has depth d + 1. It follows
that depthS US/V S = d+ 1 by the Depth Lemma, which is enough. �

Let I be an ideal of S generated by square free monomials of degree ≥ d and
xnf1, . . . , xnfr, r > 0 be the square free monomials of I ∩ (xn) of degree d. Set
U = (f1, . . . , fr), V = I ∩ S ′.
Theorem 3.3. If r > ρd(U)− ρd(U ∩ V ) then depthS S/I = depthS′(U + V )/V =
d− 1.

Proof. By Theorem 2.3 we have depthS′(U + V )/V = depthS′ U/(U ∩ V ) = d − 1.
Using Lemmas 1.2, 1.4 we get

depthS′(U + V )/V = depthS′((I : xn) ∩ S ′)/(I ∩ S ′) = d− 1.
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If depthS′ S ′/(I ∩ S ′) = depthS′ S ′/((I : xn) ∩ S ′) = d− 1 then depthS S/I = d− 1
by Lemma 3.2. If depthS′ S ′/((I : xn) ∩ S ′) = d− 2 then in the exact sequence

0→ S/(I : xn)
xn−→ S/I → S ′/(I ∩ S ′)→ 0

the first term has depth d− 1 and the other two have depth ≥ d− 1 by Lemma 1.1.
By the Depth Lemma it follows that depthS S/I = d− 1.

It remains to consider the case when at least one from depthS′ S ′/((I : xn) ∩ S ′),
depthS′ S ′/(I ∩ S ′) is ≥ d. Using the Depth Lemma in the exact sequence

0→ ((I : xn) ∩ S ′)/(I ∩ S ′)→ S ′/(I ∩ S ′)→ S ′/((I : xn) ∩ S ′)→ 0

we see that necessarily the depth of the last term is ≥ d and the depth of the middle
term is d − 1. But then the Depth Lemma applied to the previous exact sequence
gives depthS S/I = d− 1 too. �

The following corollary extends [8, Corollary 3].

Corollary 3.4. Let I be an ideal generated by µ(I) > 0 square free monomials of
degree d. If µ(I) ≥ ρd+1(I), in particular if µ(I) ≥

(
n
d+1

)
, then depthS I = d.

Proof. We have I = (V + xn(U + V ))S as above. Renumbering the variables we
may suppose that V 6= 0. Note that µ(I) = r + ρd(V ) and ρd+1(I) = ρd+1(V ) +
ρd(U + V ) > ρd(V ) + ρd(U) − ρd(U ∩ V ). By hypothesis, µ(I) ≥ ρd+1(I) and so
r > ρd(U)− ρd(U ∩ V ). Applying Theorem 3.3 we get depthS S/I = d− 1, which is
enough. �

Remark 3.5. Take in Example 2.4 S ′ = K[x1, . . . , x5] and L = (J + x5I)S ′. We
have µ(L) = 4 <

(
5

3+1

)
, that is the hypothesis of the above corollary are not fulfilled.

This is the reason that depthS′ L ≥ 3 by Lemma 3.2 since depthS I/J = 3. Thus
the condition of the above corollary is tight.
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