SINGULAR 3-1-3 – Tackling New Challenges

Anne Frühbis-Krüger, Andreas Steenpaß, Stefan Steidel

Leibniz Universität Hannover, Technische Universität Kaiserslautern

June 01, 2011

Frühbis-Krüger, et al.

SINGULAR 3-1-3 - Tackling New Challenges

June 01, 2011

- 🔹 🗐

< 4 ∰ > <

Most recent challenges: nationwide DFG-Priority Program 'Algorithmic and Experimental Methods in Algebra, Geometry and Group Theory'

Most recent challenges: nationwide DFG-Priority Program

'Algorithmic and Experimental Methods in Algebra, Geometry and Group Theory'

- tropical geometry
- toric geometry
- monodromy of families of varieties

Most recent challenges: nationwide DFG-Priority Program

'Algorithmic and Experimental Methods in Algebra, Geometry and Group Theory'

- tropical geometry
- toric geometry
- monodromy of families of varieties
- Deligne-Lusztig varieties
- regular models for arithmetic surfaces

Most recent challenges: nationwide DFG-Priority Program

'Algorithmic and Experimental Methods in Algebra, Geometry and Group Theory'

- tropical geometry
- toric geometry
- monodromy of families of varieties
- Deligne-Lusztig varieties
- regular models for arithmetic surfaces
- cryptographical applications

Most recent challenges: nationwide DFG-Priority Program

'Algorithmic and Experimental Methods in Algebra, Geometry and Group Theory'

- tropical geometry
- toric geometry
- monodromy of families of varieties
- Deligne-Lusztig varieties
- regular models for arithmetic surfaces
- cryptographical applications
- commutative and non-comm. Gröbner Bases in group theory

Facilitate interaction with other software packages (⇒ e.g. libsingular, communication interfaces to other systems)

- Facilitate interaction with other software packages
 (⇒ e.g. libsingular, communication interfaces to other systems)
- Allow more flexibility/functionality for library programmers (⇒ e.g. user defined structured data types, python_objects, python_run)

- Facilitate interaction with other software packages (⇒ e.g. libsingular, communication interfaces to other systems)
- Allow more flexibility/functionality for library programmers (⇒ e.g. user defined structured data types,

python_objects, python_run)

Make use of multicore processors

 $(\Longrightarrow parallelization)$

> Verification of integrated digital circuits (electrical engineering, e.g. IC for multiplication)

 Verification of integrated digital circuits (electrical engineering, e.g. IC for multiplication) mathematical task: Gröbner Bases in (Z/2^NZ)[<u>x</u>] where N = 8, 16, 32

- Verification of integrated digital circuits (electrical engineering, e.g. IC for multiplication) mathematical task: Gröbner Bases in (Z/2^NZ)[<u>x</u>] where N = 8, 16, 32
- Regular models for arithmetic surfaces

- Verification of integrated digital circuits (electrical engineering, e.g. IC for multiplication) mathematical task: Gröbner Bases in (Z/2^NZ)[<u>x</u>] where N = 8, 16, 32
- Regular models for arithmetic surfaces needs wider functionality over Z, not just Gröbner Bases

Theorem (Lipman)

Let X be an excellent, noetherian, reduced scheme of dimension 2. Then X has a desingularization of the form

$$X_r \stackrel{\pi_r \circ n_r}{\longrightarrow} \cdots \stackrel{\pi_2 \circ n_2}{\longrightarrow} X_1 \stackrel{\pi_1 \circ n_1}{\longrightarrow} X_0 = X$$

where each n_i is a normalization, π_i a blow-up at a 0-dim. center.

Theorem (Lipman)

Let X be an excellent, noetherian, reduced scheme of dimension 2. Then X has a desingularization of the form

$$X_r \stackrel{\pi_r \circ n_r}{\longrightarrow} \cdots \stackrel{\pi_2 \circ n_2}{\longrightarrow} X_1 \stackrel{\pi_1 \circ n_1}{\longrightarrow} X_0 = X$$

where each n_i is a normalization, π_i a blow-up at a 0-dim. center.

apply this over $\ensuremath{\mathbb{Z}}$, hence algorithmic tasks:

- normalization
- blow-up (= appropriate Gröbner basis computation)
- primary decomposition (as tool during normalization steps)

Normalization

Theorem (Grauert-Remmert Criterion for Normality)

R noetherian, reduced ring, $J \subset R$ ideal s.th.

- 1 J contains a non-zerodivisor p on A,
- 2 J is a radical ideal,
- $\exists V(\mathcal{C}_{\overline{R}|R}) \subset V(J).$

Then $R = \overline{R} \iff R \cong \operatorname{Hom}_R(J, J) \cong \frac{1}{p}(pJ:_R J) \subset \overline{R} \subset Q(R).$

Normalization

Theorem (Grauert-Remmert Criterion for Normality)

R noetherian, reduced ring, $J \subset R$ ideal s.th.

- 1 J contains a non-zerodivisor p on A,
- 2 J is a radical ideal,

$$I V(\mathcal{C}_{\overline{R}|R}) \subset V(J).$$

Then $R = \overline{R} \iff R \cong \operatorname{Hom}_R(J, J) \cong \frac{1}{p}(pJ:_R J) \subset \overline{R} \subset Q(R).$

Resulting algorithm requires primary decomposition (here over \mathbb{Z} to get $\overline{\mathbb{Z}[\underline{x}]/I}$):

- for equidimensional decomposition,
- for decomposing the singular locus.

Well-known: primary decomposition in $\mathbb{Q}[\underline{x}]$ and $\mathbb{Z}/p[\underline{x}]$ (e.g. Gianni-Trager-Zacharias)

New aspects over \mathbb{Z} :

 I ∩ Z = ⟨m⟩, m ∈ Z \ {0}, may occur for original ideal or at intermediate step Well-known: primary decomposition in $\mathbb{Q}[\underline{x}]$ and $\mathbb{Z}/p[\underline{x}]$ (e.g. Gianni-Trager-Zacharias)

New aspects over \mathbb{Z} :

- *I* ∩ ℤ = ⟨*m*⟩, *m* ∈ ℤ \ {0}, may occur for original ideal or at intermediate step
- Combine
 - primary components over \mathbb{Q} (in absence of such m)
 - minimal associated primes over \mathbb{Z}/p for prime factors p of m
 - \blacksquare extraction of primary components over $\mathbb Z$

Well-known: primary decomposition in $\mathbb{Q}[\underline{x}]$ and $\mathbb{Z}/p[\underline{x}]$ (e.g. Gianni-Trager-Zacharias)

New aspects over \mathbb{Z} :

- *I* ∩ ℤ = ⟨*m*⟩, *m* ∈ ℤ \ {0}, may occur for original ideal or at intermediate step
- Combine
 - primary components over \mathbb{Q} (in absence of such m)
 - minimal associated primes over \mathbb{Z}/p for prime factors p of m
 - \blacksquare extraction of primary components over $\mathbb Z$
- second step above is parallel in nature

On two different levels:

- **1** SINGULAR-SINGULAR communication
 - for larger subtasks (communication overhead)
 - improved and extended communication interface
 - examples: modStd, primdecZ, modular primary decomposition

On two different levels:

- **1** SINGULAR-SINGULAR communication
 - for larger subtasks (communication overhead)
 - improved and extended communication interface
 - examples: modStd, primdecZ, modular primary decomposition

2 Threads

- for fine grained subtasks
- work in progress, long term goal, affects memory management
- examples: polynomial arithmetic, polynomial gcd

Modular computation of standard basis G of an ideal $I \subset \mathbb{Q}[\underline{x}]$:

- **1** choose several primes and compute SB G_p modulo each p
- 2 delete unlucky primes (i.e. $L(I_p) \neq L(I_q)$ for most primes $q \neq p$)
- **3** find G by Chinese remaindering and Farey rational map
- **4** test Gröbner Basis property (most expensive part)
- **5** reiterate with further (new) primes if test fails

 $\operatorname{SINGULAR}\nolimits$'s method for final verification:

Theorem (Arnold (homogeneous)/ Idrees, Pfister, Steidel (general for global & local orderings))

Let $I \subseteq \mathbb{Q}[\underline{x}]$ an ideal and $G \subseteq I$ a set of polynomials such that

 L(G) = L(G_p) where G_p is a standard basis of I_p for some prime number p,

• G is a standard basis of $\langle G \rangle$,

$$I \subseteq \langle G \rangle.$$

Then $I = \langle G \rangle$.

Parallel steps in modStd:

- Compute G_p for different p in parallel via SINGULAR-SINGULAR communication
- 2 Parallel final verification tests:
 - test $f \in \langle G \rangle$ for each generator f of I
 - reduce s-polynomials of *G* w.r.t. *G*

will be implemented via threads

Example	std	modStd	$modStd_4^*$	$modStd_9^*$
cyclic8	-	8271	4120	2927
Paris.ilias13	37734	1159	676	580
homog.cyclic7	3343	3436	886	408
	-	6	3	3

Table: Total running times (in sec) for computing a standard basis of examples chosen from The SymbolicData Project (H.-G. Gräbe) via std, modStd and its parallelized variant modStd_n^{*} for n = 4, 9.

"Decompose" singular locus of randomly chosen rational plane curves:

degree	minassGTZ	assPrimes
7	39	166
8	193	196
9	3776	344
10	24865	969
11	270886	2535
12	943654	6369

Table: Total running times (in ms), where assPrimes uses 8 cores.

Proposition

R noetherian domain, $Sing(R) = \{P_1, \ldots, P_s\}$, $S_i = R \setminus P_i$ for $i = 1, \ldots, s$. Suppose intermediate rings $R \subset R^{(i)} \subset \overline{R}$ are given such that $S_i^{-1}R^{(i)} = \overline{S_i^{-1}R}$. Then $\sum_{i=1}^{s} R^{(i)} = \overline{R}$.

Proposition

R noetherian domain, $Sing(R) = \{P_1, \ldots, P_s\}$, $S_i = R \setminus P_i$ for $i = 1, \ldots, s$. Suppose intermediate rings $R \subset R^{(i)} \subset \overline{R}$ are given such that $S_i^{-1}R^{(i)} = \overline{S_i^{-1}R}$. Then $\sum_{i=1}^{s} R^{(i)} = \overline{R}$.

Proposition (Local Normality Criterion)

R noetherian domain, $R \subset R'$ module-finite extension, $P \in \text{Sing}(R)$ minimal with respect to inclusion, $S = R \setminus P$, $J' = \sqrt{PR'}$. If $R' \cong \text{Hom}_{R'}(J', J')$, then $S^{-1}R'$ is normal.

Integral Bases, Adjoint Ideals, Parametrization of Rational Curves

R coordinate ring of irreducible plane curve. Then:

- Sing(R) zero-dimensional ⇒ can use modular primary decomposition
- local contributions to normalization also via Puiseux expansions (van Hoeij) and Hensel-lifting (Böhm-Decker-Laplagne-Seelisch)

Important applications: Adjoint ideals, parametrization of rational curves. New, fast algorithms by Böhm-Decker-Laplagne-Seelisch. Two different approaches to compute adjoint ideals via localization.

SINGULAR Developers

Frühbis-Krüger, et al.

SINGULAR 3-1-3 - Tackling New Challenges

June 01, 2011

Recent Developments since SINGULAR 3-1-2

New contributed/experimental libraries include:

- integralbasis.lib Integral Bases
- paraplanecurve.lib Rational Parametrization of Rational Plane Curves
- monomialideal.lib Operations for Monomial Ideals
- multigrading.lib Multigradings and Related Operations
- primdecint.lib Primary Decomposition over the Integers
- resbinomial.lib Desingularization of Binomial Ideals
- and many more

New/improved features include:

- user defined types
- python objects
- new Singular-Singular communication interfaces